Redox signaling of cardiac HSF1 DNA binding.

نویسندگان

  • Zain Paroo
  • Michael J Meredith
  • Marius Locke
  • James V Haist
  • Morris Karmazyn
  • Earl G Noble
چکیده

Experiments involving chemical induction of the heat shock response in simple biological systems have generated the hypothesis that protein denaturation and consequential binding of heat shock transcription factor 1 (HSF1) to proximal heat shock elements (HSEs) on heat shock protein (hsp) genes are the result of oxidation and/or depletion of intracellular thiols. The purpose of the present investigation was to determine the role of redox signaling of HSF1 in the intact animal in response to physiological and pharmacological perturbations. Heat shock and exercise induced HSF1-HSE DNA binding in the rat myocardium (P < 0.001) in the absence of changes in reduced glutathione (GSH), the major nonprotein thiol in the cell. Ischemia-reperfusion, which decreased GSH content (P < 0.05), resulted in nonsignificant HSF1-HSE formation. This dissociation between physiological induction of HSF1 and changes in GSH was not gender dependent. Pharmacological ablation of GSH with L-buthionine-[S,R]-sulfoximine (BSO) treatment increased myocardial HSF1-HSE DNA binding in estrogen-naive animals (P = 0.007). Thus, although physiological induction of HSF1-HSE DNA binding is likely regulated by mediators of protein denaturation other than cellular redox status, the proposed signaling pathway may predominate with pharmacological oxidation and may represent a plausible and accessible strategy in the development of HSP-based therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1.

Stress activation of heat shock factor (HSF1) involves the conversion of repressed monomers to DNA-binding homotrimers with increased transcriptional capacity and results in transcriptional up-regulation of the heat shock protein (hsp) gene family. Cells tightly control the activity of HSF1 through interactions with hsp90 chaperone complexes and through integration into a number of different si...

متن کامل

Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.

Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat s...

متن کامل

Inhibiting Heat Shock Factor 1 in Human Cancer Cells with a Potent RNA Aptamer

Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities i...

متن کامل

A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function.

Human heat shock factor 1 (HSF1) stimulates transcription from heat shock protein genes following stress. We have used chimeric proteins containing the GAL4 DNA binding domain to identify the transcriptional activation domains of HSF1 and a separate domain that is capable of regulating activation domain function. This regulatory domain conferred heat shock inducibility to chimeric proteins cont...

متن کامل

Genetic Selection for Constitutively Trimerized Human HSF1 Mutants Identifies a Role for Coiled-Coil Motifs in DNA Binding

Human heat shock transcription factor 1 (HSF1) promotes the expression of stress-responsive genes and is a critical factor for the cellular protective response to proteotoxic and other stresses. In response to stress, HSF1 undergoes a transition from a repressed cytoplasmic monomer to a homotrimer, accumulates in the nucleus, binds DNA, and activates target gene transcription. Although these st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 283 2  شماره 

صفحات  -

تاریخ انتشار 2002